本文共 2530 字,大约阅读时间需要 8 分钟。
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNIST_data", one_hot=True)# 批次的大小batch_size = 50# 计算一共有多少批次n_batch = mnist.train.num_examples // batch_size# 参数概要def variable_summary(var): with tf.name_scope("summaries"): mean = tf.reduce_mean(var) tf.summary.scalar("mean", mean) # 平均值 with tf.name_scope("stddev"): stddev = tf.sqrt(tf.reduce_mean(var-mean)) tf.summary.scalar("stddev", stddev) # 标准差 tf.summary.scalar("max", tf.reduce_max(var)) # 最大值 tf.summary.scalar("min", tf.reduce_min(var)) # 最小值 tf.summary.histogram("histogram", var) # 直方图# 输入命名空间with tf.name_scope("input"): # 定义两个placeholder x = tf.placeholder(tf.float32, [None, 28 * 28]) y = tf.placeholder(tf.float32, [None, 10])with tf.name_scope("layer"): # 创建一个简单的神经网络 with tf.name_scope("weight"): W = tf.Variable(tf.zeros([784, 10])) variable_summary(W) with tf.name_scope("biases"): b = tf.Variable(tf.zeros([10])) variable_summary(b) with tf.name_scope("wx_plus_b"): wx_plus_b = tf.matmul(x, W) + b with tf.name_scope("softmax"): prediction = tf.nn.softmax(wx_plus_b)with tf.name_scope("loss"): # 二次代价函数 loss = tf.reduce_mean(tf.square(y - prediction)) tf.summary.scalar("loss",loss)with tf.name_scope("train"): # 使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)# 初始化变量init = tf.global_variables_initializer()with tf.name_scope("accuracy"): with tf.name_scope("correct_prediction"): # 计算正确率,下面是一个布尔型列表 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) with tf.name_scope("accuracy"): # 求准确率,首先把布尔类型转化为浮点类型 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar("accuracy", accuracy)# 合并所有的summarymerged = tf.summary.merge_all()with tf.Session() as sess: sess.run(init) # 保存Tensorboard文件 writer = tf.summary.FileWriter("logs/", sess.graph) for epoch in range(51): for batch in range(n_batch): # 使用函数获取一个批次图片 batch_xs, batch_ys = mnist.train.next_batch(batch_size) summary,_ = sess.run([merged,train_step], feed_dict={x: batch_xs, y: batch_ys}) writer.add_summary(summary, epoch) acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}) print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))通过在图中定义scalar的方法,保存标量数据,用通过tensorboard可视化出来
转载地址:http://pihv.baihongyu.com/